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Efficient Monte Carlo simulations using a shuffled nested Weyl sequence
random number generator
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The pseudorandom number generator proposed recently by Hail@n[B. L. Holian, O. E. Percus, T. T.
Warnock, and P. A. Whitlock, Phys. Rev.3B, 1607(1994] is tested via Monte Carlo computation of the free
energy difference between the defectless hcp and fcc hard sphere crystals by the Frenkel-Ladd Dnethod
Frenkel and A. J. C. Ladd, J. Chem. Phg4, 3188(1984]. It is shown that this fast and convenient for
parallel computing generator gives results in good agreement with results obtained by other generators. An
estimate of high accuracy is obtained for the hcp-fcc free energy difference near melting.
[S1063-651X99)09412-X]

PACS numbd(s): 02.70—c, 05.10--a, 61.50.Ah

Fast and easy to use pseudorandom number generatdtience, application-specific tests with knovtheoretical re-
(PRNG3 are important in many areas of scientific researchsults, performed for models that resemble given simulation
and practical applications. Various algorithms generatingoroblems constitute a useful way to test if a given PRNG is
pseudorandom numbers and methods of testing them are digeod in this sense.
cussed in detail by Knuthl]. More brief reviews of the Recently Holianet al. have introduced a generator based
present state of the subject can be found in R&S]. on the shuffled and nested Weyl sequence, further referred to

Since random number generators are nothing more thaas the SNWS generatp#]. This PRNG requires very small
deterministic algorithms that produce numbers with certaiimemory, is easy to implement, very fd&,6], and conve-
distribution properties, every generator has to fail in certaimient to use for parallel computing. Although the SNWS
simulations, in models which interfere with the particular generator was originally designed for large scale molecular
regularities of this generat$8]. Thus, by definition, perfect dynamics simulationp4], the mentioned advantages encour-
PRNG cannot exist. One can introduce, however, a practitioaged us to apply it to Monte CarlgVIC) simulations. lts
ner's definition of a good PRNG saying that this is such astructure has been slightly modified by Holigf] to avoid
generator that gives correct results for as many applicationgroblems with the finite accuracy of computer implementa-
as possibl¢3]. One can also distinguish two groups of prop- tion of real number$8]. Simple test$7,6] have not revealed
erties characterizing any generator. The first group, concerrany bad feature of this SNWS generator. Moreover, it is
ing practical aspects, includes such features as the speed ofharth mentioning that the double precision version of this
generator, its memory usage, ease of its implementation, pogenerator(used in this papemproduces numbers distributed
sibility to parallelize(distribute the calculations using it, and much more smoothly than many other generators, e.g., the
portability of its implementations. The second group con-well known RAN2 generatof9]; this can be seen in Fig. 1.
cerns theoretical characteristics of a PRNG, such a&jts (The RAN2 generator is a combination of two linear congru-
period length,(b) structural properties, an@) correlations.  encial generatorgl0] proposed by L'Ecuyef11] and addi-
Various methods have been developed to study these quatienally shuffled by Press and Teukolski2] using the
tities [1—3] because they are helpful in choosing, for a givenBays-Durham approackL3]. It has a period longer than 2
application, the right generator whi¢h) will correspond to X 10'® and was considered as “perfecf14] by its authors
the size of the sample and the planned length of simulationf®].) Additional tests of the SNWS generator were required,
(the period of the generator should not be exceeded duringowever, to check its behavior for very long sequences.
the simulationy (b) will not introduce unwanted side effects  Extensive simulations of many body systems whose prop-
caused, e.g., by a specific grid or hyperplane structure of therties are known with high accuracy can be used as a source
generator, andc) will not perturb the simulated system in- of data for practical tests of the applicability of the SNWS
troducing, e.g., an artificial collective behavior caused bygenerator. Recently, a lot of effort has been spent on the
specific correlations of pseudorandom numbers. investigation of the relative stability of the fcc and hcp crys-

As no PRNG can work well with all applications, it is tals of hard spherdd5-19. We found this problem to be a
meaningful to relate the notion of quality of a given genera-good example for practical testing of the SNWS generator.
tor to the class of problems to which it is used: a generator iFhis is so because the entropy difference between the two
good for a given class of problems if results obtained bycrystalline phases is very small, i.e., the calculations require
applying this generator to this class of problems are correchigh accuracy and, hence, should be sensitive on the quality

of the generator used. Our interest in this problem was also

stimulated by an important mathematical result obtained re-

* Author to whom correspondence should be addressed. Electronizently by Hales and Ferguson, who solved the Euler problem
address: kww@man.poznan.pl of dense packing of hard sphef@g], showing that no pack-

1063-651X/99/6(B)/76263)/$15.00 PRE 60 7626 © 1999 The American Physical Society



PRE 60 BRIEF REPORTS 7627

' ' T TABLE I. Comparison ofAf(Aya0/kgT computed near melt-
4000 ing for N=13 824 hard spheres. The details are described in text.
3000 GLM order Generator FAF(N o /KT

10 SIMGEN —8+27
fn 2000 10 RAN2 88+ 22
DRANDA48 108+21
1000 SNWS 11123
20 RAN2 11616
DRANDA48 95+ 15
0 SNWS 93:15
9200 9600 10000 10400 10800 40 RAN2 107-11
n DRANDA48 92+10
FIG. 1. Smoothness test is performed by dividing the unit inter- SNWS 9710

val into M (hereM = 10°) equal bins, and generatirng pseudoran-

dom numberghereK = 10!%. The number of the bins, into which . L
n random numbers were put is then plotted as a function. dff is lattice=fcc, hep. The limitAf(Amayx— ) corresponds to the

easy to show that for random numbers distributed uniformly and?clgecrs/r;(t:;s()f the free energy per sphere between the hcp and
continuously on the unit interv&D,1) such a dependence should be S _

Gaussian. In the above figure the results obtained for the SNW? The simulations were done fdd=13824 _h‘?‘rd spheres .
generator(crosses and for the RAN2 generatdopen circley are 54 hexagon_al Iall'yilrsl Olf 24 I’OV\}{]S, ea;l:h ;:ontalnlng 34 gpherhes,
shown. The distribution obtained for the SNWS generator is indeed!S System Is slightly larger than the largest studied in the

Gaussiarf6], whereas it is clearly not Gaussian for the RAN2 gen- literature in this contextfor \p,,=632.026[22] and the
erator. relative densityp/p.,=0.736, which is close to the melting

point of hard spheref21]. The integration was performed
ing of spheres can be denser than that of the fcc packing/Sing the 10-, 20-, and 40-point Gauss-Legendre method
Their rigorous result provided a qualitatively new argument(GLM) for a few PRNGs. For given order of the GLM, the
supporting the fundamental role of structures forming closelygimulations of a given structurécc or hcp were performed
packed stacks of hexagonal layers of hard spheres; the f&duentially starting from the largestand decreasing it in
and hcp crystals are the simplest examples of such structure@bsequent runs. Each run corresponded to< 168 MC
A|though a general consensus has been reached recenﬂycles after eqUIllbI’atlon. The simulations were conducted
about the thermodynamic stability of the fcc structure in thedn SGI Power Challenge, IBM SP2, and HP workstations
whole density range of existence of the hard sphere soli#Sing overall some 2000 hours of CPU time.
[15-19, a large quantitative discrepancy remains, however, 10 check if the simulation results are sensitive to the qual-
between the results obtained by Woodc¢ak], who used ity of the generator used, we performed a 10-point run with a
molecular dynamics simulations, and other researdids ~ Very simple PRNG described {23], further referred to as
19], who used MC simulations. It is not obvious if this dis- SIMGEN. This matrix linear congruencial generator with the
crepancy is related to an unknown asymptotic behavior offodulo being the power of 24] has the cycle of only Z
the hysteresis region of the Hoover-Ree single occupanc umbers and its smoothness test shows significant departure
model[21], used by Woodcock, or to other reasons. In thisom a Gaussian already fo =10" bins (K=10°). As can
context, a study of possible influence of various PRNGs o€ seen in Table |, the obtained result has a different sign

the entropy difference is of interest. than the data obtained using other generators, which proves
For the present test we have chosen the method proposé@nsitivity of the simulations on the PRNG used. _
by Frenkel and Laddi22]. Although this method is consid- ~ The main tests have been done for three generaors:

ered to be not as accurate as the recently developed metho8®WS, (i) RAN2, and(iii) DRAND48[25]. (The latter gen-
based on multicanonical distributif7,19, it is much sim- ~ erator is a linear congruencial one with the peridd. ave

pler. We computed the differen¢a2], do not know any incorrect results obtained by using this
generator except the most recentrf@ar’s calculations of
AMfhma) 1 [Amad 9FredN) I pep(N) some particular determinanf&6]. We should note .thqt t_hg
—_— = - outcome of the smoothness tests for DRANDA48 is indistin-
kgT ksT Jo { AN AN

guishable from those obtained for the SNW&.) The re-
Amax sults shov_vn in Tablg | reveal good agreement betyveen the
=f {((AT{D) ), = (AT ), HdA data obtained by using these three generators. Using all the
0 results obtainedexcept that forsIMGEN), one can obtain
Amax quite an accurate estimate foAf(\,.)/kgT=(100
Ej AR(N)dN\, (1) +5)10 °. An analysis of the\ dependence cAR(\) sug-
0 gests that for large\ it is negative and its absolute value
decays exponentially. This makes it possible to estimate the
where fi,ice(N) denotes the free energy per particleMf correction to the difference of the free energies per sphere of
hard spheres that interact with théittice sites,r; jaiice, By the hcp and fec lattices which comes from the integration of
the harmonic potentiak (Ar{8)ice) =N 1 (Fi—Ti jaice)’s  AR(M\) betweenh ., and o in Eq. (1). This correction is
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(7+10)10 kg T. Thus, the difference of the free energies iscock and others is not related to generators of pseudo-
estimated as (296)10 °kgT, which agrees with the most random numbers used in MC simulations.

recent result (9% 5)10 °kgT obtained by the lattice-switch Recently, exploiting the advantages of the SNWS genera-
MC method[19]. Taking into account that the free energy tor, we were able to perform other extensive simulations,
difference increases by about 0.0892 when the density is computing elastic constants of various model systems
increased from the melting one p.,=0.7778[27], we  [28,29. Those simulations also have not revealed any statis-
should notice, however, that the present result differs by gcally significant differences between the data obtained by
statistically ~ significant amount from the value (86 ysing the SNWS generator and other generators. This en-

+3)10 °kgT, obtained for the latter density [17]. We do  courages one to apply this fast generator in MC simulations
not know the origin of this discrepancy. of many body systems.

In conclusion, we showed thdt) the used SNWS PRNG
gives, within the Frenkel-Ladd method, the same results for
the free energy difference of the hcp and fcc crystals of hard We are grateful to Professor B. L. Holian and Professor
spheres near melting as some otheell tested generators, W. G. Hoover for helpful correspondence and to Dr. J. Mar-
(i) the Frenkel-Ladd method enables one to obtain quite atinek for useful remarks. One of the authqis.W.W.) is
accurate estimate of this free energy difference, and the valugrateful to Professor Yu Lu and Professor S. Shenoy for
of the latter one is in fair agreement with the most recenhospitality. This work was supported by tkiolish Com-
result obtained by Mau and Huse by the multicanonical dismittee for Scientific ResearcHKBN) by Grant No.
tribution method[19]. The results presented above indicate8T11F01214. Part of the calculations were performed at the
also that the discrepancy between the calculations of Wood?oznanComputer and Networking CentéPCSS.
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