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Efficient Monte Carlo simulations using a shuffled nested Weyl sequence
random number generator
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The pseudorandom number generator proposed recently by Holianet al. @B. L. Holian, O. E. Percus, T. T.
Warnock, and P. A. Whitlock, Phys. Rev. E50, 1607~1994!# is tested via Monte Carlo computation of the free
energy difference between the defectless hcp and fcc hard sphere crystals by the Frenkel-Ladd method@D.
Frenkel and A. J. C. Ladd, J. Chem. Phys.81, 3188 ~1984!#. It is shown that this fast and convenient for
parallel computing generator gives results in good agreement with results obtained by other generators. An
estimate of high accuracy is obtained for the hcp-fcc free energy difference near melting.
@S1063-651X~99!09412-X#
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Fast and easy to use pseudorandom number gener
~PRNGs! are important in many areas of scientific resea
and practical applications. Various algorithms generat
pseudorandom numbers and methods of testing them are
cussed in detail by Knuth@1#. More brief reviews of the
present state of the subject can be found in Refs.@2,3#.

Since random number generators are nothing more
deterministic algorithms that produce numbers with cert
distribution properties, every generator has to fail in cert
simulations, in models which interfere with the particul
regularities of this generator@3#. Thus, by definition, perfec
PRNG cannot exist. One can introduce, however, a pract
ner’s definition of a good PRNG saying that this is such
generator that gives correct results for as many applicat
as possible@3#. One can also distinguish two groups of pro
erties characterizing any generator. The first group, conc
ing practical aspects, includes such features as the speed
generator, its memory usage, ease of its implementation,
sibility to parallelize~distribute! the calculations using it, and
portability of its implementations. The second group co
cerns theoretical characteristics of a PRNG, such as its~a!
period length,~b! structural properties, and~c! correlations.
Various methods have been developed to study these q
tities @1–3# because they are helpful in choosing, for a giv
application, the right generator which~a! will correspond to
the size of the sample and the planned length of simulat
~the period of the generator should not be exceeded du
the simulations!, ~b! will not introduce unwanted side effect
caused, e.g., by a specific grid or hyperplane structure of
generator, and~c! will not perturb the simulated system in
troducing, e.g., an artificial collective behavior caused
specific correlations of pseudorandom numbers.

As no PRNG can work well with all applications, it i
meaningful to relate the notion of quality of a given gene
tor to the class of problems to which it is used: a generato
good for a given class of problems if results obtained
applying this generator to this class of problems are corr
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Hence, application-specific tests with known~theoretical! re-
sults, performed for models that resemble given simulat
problems constitute a useful way to test if a given PRNG
good in this sense.

Recently Holianet al. have introduced a generator bas
on the shuffled and nested Weyl sequence, further referre
as the SNWS generator@4#. This PRNG requires very sma
memory, is easy to implement, very fast@5,6#, and conve-
nient to use for parallel computing. Although the SNW
generator was originally designed for large scale molecu
dynamics simulations@4#, the mentioned advantages encou
aged us to apply it to Monte Carlo~MC! simulations. Its
structure has been slightly modified by Holian@7# to avoid
problems with the finite accuracy of computer implemen
tion of real numbers@8#. Simple tests@7,6# have not revealed
any bad feature of this SNWS generator. Moreover, it
worth mentioning that the double precision version of th
generator~used in this paper! produces numbers distribute
much more smoothly than many other generators, e.g.,
well known RAN2 generator@9#; this can be seen in Fig. 1
~The RAN2 generator is a combination of two linear cong
encial generators@10# proposed by L’Ecuyer@11# and addi-
tionally shuffled by Press and Teukolsky@12# using the
Bays-Durham approach@13#. It has a period longer than 2
31018 and was considered as ‘‘perfect’’@14# by its authors
@9#.! Additional tests of the SNWS generator were require
however, to check its behavior for very long sequences.

Extensive simulations of many body systems whose pr
erties are known with high accuracy can be used as a so
of data for practical tests of the applicability of the SNW
generator. Recently, a lot of effort has been spent on
investigation of the relative stability of the fcc and hcp cry
tals of hard spheres@15–19#. We found this problem to be a
good example for practical testing of the SNWS genera
This is so because the entropy difference between the
crystalline phases is very small, i.e., the calculations req
high accuracy and, hence, should be sensitive on the qu
of the generator used. Our interest in this problem was a
stimulated by an important mathematical result obtained
cently by Hales and Ferguson, who solved the Euler prob
of dense packing of hard spheres@20#, showing that no pack-
ic
7626 © 1999 The American Physical Society
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ing of spheres can be denser than that of the fcc pack
Their rigorous result provided a qualitatively new argume
supporting the fundamental role of structures forming clos
packed stacks of hexagonal layers of hard spheres; the
and hcp crystals are the simplest examples of such struct
Although a general consensus has been reached rec
about the thermodynamic stability of the fcc structure in
whole density range of existence of the hard sphere s
@15–19#, a large quantitative discrepancy remains, howev
between the results obtained by Woodcock@15#, who used
molecular dynamics simulations, and other researchers@16–
19#, who used MC simulations. It is not obvious if this di
crepancy is related to an unknown asymptotic behavior
the hysteresis region of the Hoover-Ree single occupa
model @21#, used by Woodcock, or to other reasons. In t
context, a study of possible influence of various PRNGs
the entropy difference is of interest.

For the present test we have chosen the method prop
by Frenkel and Ladd@22#. Although this method is consid
ered to be not as accurate as the recently developed me
based on multicanonical distribution@17,19#, it is much sim-
pler. We computed the difference@22#,

D f ~lmax!

kBT
[

1

kBTE0

lmaxF] f f cc~l!

]l
2

] f hcp~l!

]l G
5E

0

lmax

$^~Dr f cc
(N)!2&l2^~Drhcp

(N) !2&l%dl

[E
0

lmax
DR~l!dl, ~1!

where f lattice(l) denotes the free energy per particle ofN
hard spheres that interact with theirlattice sites,r i ,latt ice , by
the harmonic potentiall(Dr latt ice

(N) )2[l( i 51
N (r i2r i ,latt ice)

2;

FIG. 1. Smoothness test is performed by dividing the unit int
val into M ~hereM5106) equal bins, and generatingK pseudoran-
dom numbers~hereK51010). The number of the binsf n into which
n random numbers were put is then plotted as a function ofn. It is
easy to show that for random numbers distributed uniformly a
continuously on the unit interval~0,1! such a dependence should b
Gaussian. In the above figure the results obtained for the SN
generator~crosses! and for the RAN2 generator~open circles! are
shown. The distribution obtained for the SNWS generator is ind
Gaussian@6#, whereas it is clearly not Gaussian for the RAN2 ge
erator.
g.
t
y
cc
es.
tly

e
id
r,

f
cy
s
n

ed

ods

lattice5fcc, hcp. The limitD f (lmax→`) corresponds to the
difference of the free energy per sphere between the hcp
fcc crystals.

The simulations were done forN513 824 hard sphere
~24 hexagonal layers of 24 rows, each containing 24 sphe
this system is slightly larger than the largest studied in
literature in this context! for lmax5632.026 @22# and the
relative densityr/rcp50.736, which is close to the meltin
point of hard spheres@21#. The integration was performe
using the 10-, 20-, and 40-point Gauss-Legendre met
~GLM! for a few PRNGs. For given order of the GLM, th
simulations of a given structure~fcc or hcp! were performed
sequentially starting from the largestl and decreasing it in
subsequent runs. Each run corresponded to 1.43105 MC
cycles after equilibration. The simulations were conduc
on SGI Power Challenge, IBM SP2, and HP workstatio
using overall some 2000 hours of CPU time.

To check if the simulation results are sensitive to the qu
ity of the generator used, we performed a 10-point run wit
very simple PRNG described in@23#, further referred to as
SIMGEN. This matrix linear congruencial generator with t
modulo being the power of 2@24# has the cycle of only 222

numbers and its smoothness test shows significant depa
from a Gaussian already forM5104 bins (K5108). As can
be seen in Table I, the obtained result has a different s
than the data obtained using other generators, which pro
sensitivity of the simulations on the PRNG used.

The main tests have been done for three generators~i!
SNWS,~ii ! RAN2, and~iii ! DRAND48 @25#. ~The latter gen-
erator is a linear congruencial one with the period 248. We
do not know any incorrect results obtained by using t
generator except the most recent Ga¨rtner’s calculations of
some particular determinants@26#. We should note that the
outcome of the smoothness tests for DRAND48 is indist
guishable from those obtained for the SNWS@6#.! The re-
sults shown in Table I reveal good agreement between
data obtained by using these three generators. Using al
results obtained~except that forSIMGEN!, one can obtain
quite an accurate estimate forD f (lmax)/kBT5(100
65)1025. An analysis of thel dependence ofDR(l) sug-
gests that for largel it is negative and its absolute valu
decays exponentially. This makes it possible to estimate
correction to the difference of the free energies per spher
the hcp and fcc lattices which comes from the integration
DR(l) betweenlmax and ` in Eq. ~1!. This correction is

-

d

S

d
-

TABLE I. Comparison ofD f (lmax)/kBT computed near melt-
ing for N513 824 hard spheres. The details are described in te

GLM order Generator 105D f (lmax)/kBT

10 SIMGEN 28627
10 RAN2 88622

DRAND48 108621
SNWS 111623

20 RAN2 116616
DRAND48 95615

SNWS 93615
40 RAN2 107611

DRAND48 92610
SNWS 97610
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(7610)1026kBT. Thus, the difference of the free energies
estimated as (9966)1025kBT, which agrees with the mos
recent result (9165)1025kBT obtained by the lattice-switch
MC method@19#. Taking into account that the free energ
difference increases by about 0.0002kBT when the density is
increased from the melting one tor/rcp50.7778 @27#, we
should notice, however, that the present result differs b
statistically significant amount from the value (8
63)1025kBT, obtained for the latter density in@17#. We do
not know the origin of this discrepancy.

In conclusion, we showed that:~i! the used SNWS PRNG
gives, within the Frenkel-Ladd method, the same results
the free energy difference of the hcp and fcc crystals of h
spheres near melting as some other~well tested! generators,
~ii ! the Frenkel-Ladd method enables one to obtain quite
accurate estimate of this free energy difference, and the va
of the latter one is in fair agreement with the most rece
result obtained by Mau and Huse by the multicanonical d
tribution method@19#. The results presented above indica
also that the discrepancy between the calculations of Wo
s
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cock and others is not related to generators of pseu
random numbers used in MC simulations.

Recently, exploiting the advantages of the SNWS gene
tor, we were able to perform other extensive simulatio
computing elastic constants of various model syste
@28,29#. Those simulations also have not revealed any sta
tically significant differences between the data obtained
using the SNWS generator and other generators. This
courages one to apply this fast generator in MC simulati
of many body systems.

We are grateful to Professor B. L. Holian and Profes
W. G. Hoover for helpful correspondence and to Dr. J. M
tinek for useful remarks. One of the authors~K.W.W.! is
grateful to Professor Yu Lu and Professor S. Shenoy
hospitality. This work was supported by the~Polish! Com-
mittee for Scientific Research~KBN! by Grant No.
8T11F01214. Part of the calculations were performed at
Poznan´ Computer and Networking Center~PCSS!.
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